Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
J Med Internet Res ; 25: e42717, 2023 02 16.
Article in English | MEDLINE | ID: covidwho-2268245

ABSTRACT

BACKGROUND: An artificial intelligence (AI) model using chest radiography (CXR) may provide good performance in making prognoses for COVID-19. OBJECTIVE: We aimed to develop and validate a prediction model using CXR based on an AI model and clinical variables to predict clinical outcomes in patients with COVID-19. METHODS: This retrospective longitudinal study included patients hospitalized for COVID-19 at multiple COVID-19 medical centers between February 2020 and October 2020. Patients at Boramae Medical Center were randomly classified into training, validation, and internal testing sets (at a ratio of 8:1:1, respectively). An AI model using initial CXR images as input, a logistic regression model using clinical information, and a combined model using the output of the AI model (as CXR score) and clinical information were developed and trained to predict hospital length of stay (LOS) ≤2 weeks, need for oxygen supplementation, and acute respiratory distress syndrome (ARDS). The models were externally validated in the Korean Imaging Cohort of COVID-19 data set for discrimination and calibration. RESULTS: The AI model using CXR and the logistic regression model using clinical variables were suboptimal to predict hospital LOS ≤2 weeks or the need for oxygen supplementation but performed acceptably in the prediction of ARDS (AI model area under the curve [AUC] 0.782, 95% CI 0.720-0.845; logistic regression model AUC 0.878, 95% CI 0.838-0.919). The combined model performed better in predicting the need for oxygen supplementation (AUC 0.704, 95% CI 0.646-0.762) and ARDS (AUC 0.890, 95% CI 0.853-0.928) compared to the CXR score alone. Both the AI and combined models showed good calibration for predicting ARDS (P=.079 and P=.859). CONCLUSIONS: The combined prediction model, comprising the CXR score and clinical information, was externally validated as having acceptable performance in predicting severe illness and excellent performance in predicting ARDS in patients with COVID-19.


Subject(s)
COVID-19 , Deep Learning , Respiratory Distress Syndrome , Humans , Artificial Intelligence , COVID-19/diagnostic imaging , Longitudinal Studies , Retrospective Studies , Radiography , Oxygen , Prognosis
2.
Korean J Intern Med ; 2022 Oct 25.
Article in English | MEDLINE | ID: covidwho-2238919

ABSTRACT

Background/Aims: To identify changes in symptoms and pulmonary sequelae in patients with coronavirus disease 2019 (COVID-19). Methods: Patients with COVID-19 hospitalized at seven university hospitals in Korea between February 2020 and February 2021 were enrolled, provided they had ≥ 1 outpatient follow-up visit. Between January 11 and March 9, 2021 (study period), residual symptom investigations, chest computed tomography (CT) scans, pulmonary function tests (PFT), and neutralizing antibody tests (NAb) were performed at the outpatient visit (cross-sectional design). Additionally, data from patients who already had follow-up outpatient visits before the study period were collected retrospectively. Results: Investigation of residual symptoms, chest CT scans, PFT, and NAb were performed in 84, 35, 31, and 27 patients, respectively. After 6 months, chest discomfort and dyspnea persisted in 26.7% (4/15) and 33.3% (5/15) patients, respectively, and 40.0% (6/15) and 26.7% (4/15) patients experienced financial loss and emotional distress, respectively. When the ratio of later CT score to previous ones was calculated for each patient between three different time intervals (1-14, 15-60, and 61-365 days), the median values were 0.65 (the second interval to the first), 0.39 (the third to the second), and 0.20 (the third to the first), indicating that CT score decreases with time. In the high-severity group, the ratio was lower than in the low-severity group. Conclusions: In COVID-19 survivors, chest CT score recovers over time, but recovery is slower in severely ill patients. Subjects complained of various ongoing symptoms and socioeconomic problems for several months after recovery.

4.
Korean J Radiol ; 21(10): 1150-1160, 2020 10.
Article in English | MEDLINE | ID: covidwho-2089785

ABSTRACT

OBJECTIVE: To describe the experience of implementing a deep learning-based computer-aided detection (CAD) system for the interpretation of chest X-ray radiographs (CXR) of suspected coronavirus disease (COVID-19) patients and investigate the diagnostic performance of CXR interpretation with CAD assistance. MATERIALS AND METHODS: In this single-center retrospective study, initial CXR of patients with suspected or confirmed COVID-19 were investigated. A commercialized deep learning-based CAD system that can identify various abnormalities on CXR was implemented for the interpretation of CXR in daily practice. The diagnostic performance of radiologists with CAD assistance were evaluated based on two different reference standards: 1) real-time reverse transcriptase-polymerase chain reaction (rRT-PCR) results for COVID-19 and 2) pulmonary abnormality suggesting pneumonia on chest CT. The turnaround times (TATs) of radiology reports for CXR and rRT-PCR results were also evaluated. RESULTS: Among 332 patients (male:female, 173:159; mean age, 57 years) with available rRT-PCR results, 16 patients (4.8%) were diagnosed with COVID-19. Using CXR, radiologists with CAD assistance identified rRT-PCR positive COVID-19 patients with sensitivity and specificity of 68.8% and 66.7%, respectively. Among 119 patients (male:female, 75:44; mean age, 69 years) with available chest CTs, radiologists assisted by CAD reported pneumonia on CXR with a sensitivity of 81.5% and a specificity of 72.3%. The TATs of CXR reports were significantly shorter than those of rRT-PCR results (median 51 vs. 507 minutes; p < 0.001). CONCLUSION: Radiologists with CAD assistance could identify patients with rRT-PCR-positive COVID-19 or pneumonia on CXR with a reasonably acceptable performance. In patients suspected with COVID-19, CXR had much faster TATs than rRT-PCRs.


Subject(s)
Betacoronavirus , Coronavirus Infections/diagnostic imaging , Deep Learning , Pneumonia, Viral/diagnostic imaging , Radiography, Thoracic , Adult , Aged , COVID-19 , Female , Humans , Male , Middle Aged , Pandemics , Radiography, Thoracic/methods , Retrospective Studies , SARS-CoV-2 , Tomography, X-Ray Computed/methods
5.
J Korean Med Sci ; 35(46): e413, 2020 Nov 30.
Article in English | MEDLINE | ID: covidwho-951725

ABSTRACT

BACKGROUND: The Korean Society of Thoracic Radiology (KSTR) recently constructed a nation-wide coronavirus disease 2019 (COVID-19) database and imaging repository, referred to the Korean imaging cohort of COVID-19 (KICC-19) based on the collaborative efforts of its members. The purpose of this study was to provide a summary of the clinico-epidemiological data and imaging data of the KICC-19. METHODS: The KSTR members at 17 COVID-19 referral centers retrospectively collected imaging data and clinical information of consecutive patients with reverse transcription polymerase chain reaction-proven COVID-19 in respiratory specimens from February 2020 through May 2020 who underwent diagnostic chest computed tomography (CT) or radiograph in each participating hospital. RESULTS: The cohort consisted of 239 men and 283 women (mean age, 52.3 years; age range, 11-97 years). Of the 522 subjects, 201 (38.5%) had an underlying disease. The most common symptoms were fever (n = 292) and cough (n = 245). The 151 patients (28.9%) had lymphocytopenia, 86 had (16.5%) thrombocytopenia, and 227 patients (43.5%) had an elevated CRP at admission. The 121 (23.4%) needed nasal oxygen therapy or mechanical ventilation (n = 38; 7.3%), and 49 patients (9.4%) were admitted to an intensive care unit. Although most patients had cured, 21 patients (4.0%) died. The 465 (89.1%) subjects underwent a low to standard-dose chest CT scan at least once during hospitalization, resulting in a total of 658 CT scans. The 497 subjects (95.2%) underwent chest radiography at least once during hospitalization, which resulted in a total of 1,475 chest radiographs. CONCLUSION: The KICC-19 was successfully established and comprised of 658 CT scans and 1,475 chest radiographs of 522 hospitalized Korean COVID-19 patients. The KICC-19 will provide a more comprehensive understanding of the clinical, epidemiological, and radiologic characteristics of patients with COVID-19.


Subject(s)
COVID-19/diagnostic imaging , Radiography, Thoracic/methods , SARS-CoV-2 , Tomography, X-Ray Computed/methods , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/therapy , Child , Cohort Studies , Female , Humans , Male , Middle Aged , Retrospective Studies , Young Adult
6.
Eur J Radiol ; 132: 109272, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-753629

ABSTRACT

PURPOSE: To report real-world diagnostic performance of chest x-ray (CXR) readings during the COVID-19 pandemic. METHODS: In this retrospective observational study we enrolled all patients presenting to the emergency department of a Milan-based university hospital from February 24th to April 8th 2020 who underwent nasopharyngeal swab for reverse transcriptase-polymerase chain reaction (RT-PCR) and anteroposterior bedside CXR within 12 h. A composite reference standard combining RT-PCR results with phone-call-based anamnesis was obtained. Radiologists were grouped by CXR reading experience (Group-1, >10 years; Group-2, <10 years), diagnostic performance indexes were calculated for each radiologist and for the two groups. RESULTS: Group-1 read 435 CXRs (77.0 % disease prevalence): sensitivity was 89.0 %, specificity 66.0 %, accuracy 83.7 %. Group-2 read 100 CXRs (73.0 % prevalence): sensitivity was 89.0 %, specificity 40.7 %, accuracy 76.0 %. During the first half of the outbreak (195 CXRs, 66.7 % disease prevalence), overall sensitivity was 80.8 %, specificity 67.7 %, accuracy 76.4 %, Group-1 sensitivity being similar to Group-2 (80.6 % versus 81.5 %, respectively) but higher specificity (74.0 % versus 46.7 %) and accuracy (78.4 % versus 69.0 %). During the second half (340 CXRs, 81.8 % prevalence), overall sensitivity increased to 92.8 %, specificity dropped to 53.2 %, accuracy increased to 85.6 %, this pattern mirrored in both groups, with decreased specificity (Group-1, 58.0 %; Group-2, 33.3 %) but increased sensitivity (92.7 % and 93.5 %) and accuracy (86.5 % and 81.0 %, respectively). CONCLUSIONS: Real-world CXR diagnostic performance during the COVID-19 pandemic showed overall high sensitivity with higher specificity for more experienced radiologists. The increase in accuracy over time strengthens CXR role as a first line examination in suspected COVID-19 patients.


Subject(s)
Clinical Competence/statistics & numerical data , Coronavirus Infections/diagnostic imaging , Pneumonia, Viral/diagnostic imaging , Radiography, Thoracic/methods , Betacoronavirus , COVID-19 , Female , Humans , Lung/diagnostic imaging , Male , Middle Aged , Pandemics , Radiography, Thoracic/standards , Radiologists/standards , Reproducibility of Results , Retrospective Studies , SARS-CoV-2 , Sensitivity and Specificity
7.
Taehan Yongsang Uihakhoe Chi ; 81(3): 583-590, 2020 May.
Article in English | MEDLINE | ID: covidwho-678366

ABSTRACT

Coronavirus disease 2019 (COVID-19) is spreading rapidly around the world. Several articles have so far reported on radiological findings of COVID-19 pneumonia. Herein, we present three cases of COVID-19 pneumonia in South Korea, and provide clinical information as well as chest radiograph and chest CT findings.

SELECTION OF CITATIONS
SEARCH DETAIL